🐕 Elektrownie Jądrowe Wady I Zalety
Elektrownia jądrowa ma swoje wady i zalety. Z jednej strony budzi kontrowersje i sprzeciw społeczeństwa, ale z drugiej - daje szansę na stosunkowo tanią i czystą energię. W czym atom jest lepszy od węgla, wiatru czy gazu? Dlaczego niektórzy protestują przeciwko budowie elektrowni jądrowych?
Zalety elektrowni węglowych. Dostępność i niezawodność: Elektrownie węglowe mają wysoką sprawność i są w stanie dostarczać energię elektryczną na dużą skalę, co jest szczególnie ważne dla krajów o dużym zapotrzebowaniu energetycznym. Niskie koszty: W porównaniu do niektórych alternatywnych źródeł energii, takich jak
4.Elektrownie jądrowe(atomowe) Zalety: - duża wydajność - niskie ceny uzyskiwanej energii elektrycznej - nie zanieczyszczają środowiska pyłami czy gazami - przy odpowiedniej eksploatacji są prawie zupełnie nieszkodliwe - niskie koszty eksploatacji Wady: - wysokie koszty budowy i eksploatacji
Zapowiadany odcinek o tradycyjnym filarze gospodarki jakim jest energetyka. Porównaliśmy największe elektrownie na świecie, ile dają prądu, jakiego potrzebuj
Konwencjonalne źródła energii - definicja, przykłady, wady i zalety Energetyka konwencjonalna bazuje na wykorzystaniu nieodnawialnych źródeł energii – zaliczamy tu przede wszystkim elektrownie cieplne opalane węglem kamiennym, brunatnym oraz gazem ziemnym lub ropą naftową, jak również elektrownie jądrowe, wykorzystujące do
Elektrownie jądrowe chłodzone wodą - w takich elektrowniach paliwo jądrowe znajduje się w specjalnych prętach, które są umieszczone w reaktorze. Woda, która pełni rolę chłodziwa, przepływa przez rdzeń reaktora, pobierając ciepło od prętów paliwowych i przekazując je do generatora pary, który z kolei napędza turbinę parową.
Różnice w stosunku do elektrowni konwencjonalnych[ | ] Elektrownia jądrowa różni się od cieplnych elektrowni konwencjonalnych źródłem uzyskiwania ciepła potrzebnego do wytworzenia pary wodnej. W elektrowniach konwencjonalnych zwykle pozyskuje się je ze spalania węgla, ropy naftowej lub gazu ziemnego.
elektrownie jądrowe . zalety: - duża wydajność i niskie koszty pordukcji - niewielka ingerencja w środowisko przyrodnicze - niewielkie zużycie pierwiastków promieniotwórczych . wady: - wysokie koszty budowy - duże zagrożenie dla ludzi oraz środowiska przyrodniczego w przypadku awarii reaktorów. elektrownie wodne. zalety:
2) Wady elektrowni cieplnych: 1. W razie awarii skaża środowisko 2. Zanieczyszczenie powietrza 3. Zagrożenie dla przelatujących ptaków Zalety: 1. Elektrownie posiadają nowoczesne technologie 2. Dostarczają dużo energii 3. W czasie wytwarzania energii nie ma hałasu 3) Wady elektrowni wodnych: 1. Zależność od opadów deszczu. 2.
Elektrownie jądrowe (atomowe) Są to elektrownie, których zasada działania jest podobna jak w przypadku elektrowni cieplnych, z tym, że ciepło nie jest wydzielane w wyniku spalania surowców, lecz na skutek reakcji łańcuchowej reakcji łańcuchowej, która polega na rozszczepieniu jąder pierwiastków promieniotwórczych (głównie uranu, plutonu i toru) w reaktorze jądrowym.
Elektrownie dzieli się zależnie od wykorzystywanego źródła energii na: cieplne, jądrowe, wodne (hydroelektrownie), wiatrowe, słoneczne, wady i zalety;
Elektrownie jądrowe są głównym źródłem produkcji energii elektrycznej w Unii Europejskiej. Dziś w Europie działa ponad 100 reaktorów - w 13 krajach Unii Europejskiej, a także w Wielkiej Brytanii, Rosji, Białorusi czy Armenii. W 2021 r. W Unii Europejskiej elektrownie jądrowe wyprodukowały 731 terawatogodzin energii - jedną
KCvh. Spis treści – Czego dowiesz się z artykułu? 1. Droga inwestycja Chociaż budowa elektrowni atomowej nie tylko pomoże zdywersyfikować źródła energii, ale również będzie wsparciem dla naszej gospodarki, to koszt jej wzniesienia jest bardzo wysoki. Koszt budowy elektrowni atomowej waha się od kilku do kilkunastu miliardów euro – eksperci szacują, że inwestycja może nas kosztować 40-50 mld złotych, będzie to sporym obciążeniem dla naszego kraju. 2. Odpady i ich utylizacja Wielu przeciwników energetyki jądrowej zgodnie podkreśla, że wcale nie jest ona takim ekologicznym rozwiązaniem, gdyż nawet przy recyklingu odpadów, okres ich radioaktywności wynosi 200-300 lat. W przypadku OZE nie ma mowy o niebezpiecznych składowiskach, które obciążałyby jeszcze następne pokolenia. 3. Nie mamy źródeł uranu Kolejnym problemem jest uran, który niestety będziemy musieli importować – oznacza to zależność od państw, posiadających jego zasoby (potwierdzone zasoby posiadają Kanada, Australia, Kazachstan, Rosja, USA, RPA, Namibia). Ponadto, na niekorzyść działa także zmienność jego cen na rynku światowym – w ciągu ostatnich kilku lat jego cena wzrosła nawet o kilkaset dolarów. 4. Ataki terrorystyczne Sytuacja na świecie w ostatnim czasie jest bardzo niestabilna i praktycznie każde państwo zagrożone jest atakami terrorystycznymi – z pewnością taki obiekt, jak elektrownia atomowa mógłby być celem terrorystów. 5. Zagrożenie katastrofą Wszyscy pamiętamy Czarnobyl, czy Fukushimę I – nawet najlepsze i najnowocześniejsze zabezpieczenia nie są w stanie wyeliminować potencjalnych zagrożeń, których wraz z gwałtownymi zmianami klimatu nie brakuje. Katastrofa w elektrowni atomowej mogłaby spowodować, że na ogromnym obszarze ucierpiałyby wszystkie istoty żywe oraz środowisko. 6. Brak wykształconej kadry Budowa elektrowni jądrowej to również problem od strony ludzkiej – w Polsce nie mamy specjalistów od energetyki jądrowej, więc pewnie na początku bylibyśmy zależni od zagranicznego kapitału ludzkiego. Utworzenie nowych kierunków na studiach i wykształcenie kadry może zająć wiele lat. Informacje o autorze to pierwsza porównywarka cen prądu w Internecie. Dzisiaj nie tylko porównujemy koszty kWh energii elektrycznej oraz gazu, ale również tworzymy dla Was rankingi, recenzje oraz eksperckie artykuły z innych branż energetycznych, takich jak fotowoltaika, pompy ciepła czy magazyny energii.
Energetyka: Energetyka jest to nauka techniczna zajmująca się zagadnieniami przetwarzania, przesyłania, gromadzenia i wykorzystywania różnych rodzajów energii. W zależności od rodzaju energii można wyróżnić: energetykę cieplną (termoenergetyka), energetykę wodną (hydroenergetyka), elektroenergetykę, energetykę jądrową, energetykę wiatrową (aeroenergetyka).Energetyka jądrowa:Energetyka jądrowa jest to jedna z kilku rodzajów energii. Wyjaśniana często jako zespół zagadnień związanych z uzyskiwaniem na skalę przemysłową energii z rozszczepienia ciężkich jąder pierwiastków (głównie uranu 235). Energię tę pozyskuje się w elektrowniach jądrowych (reaktor jądrowy*), w reaktorach służących do napędu okrętów, w zasilaczach izotopowych jak już wcześniej wspomniałam jest jednym z pierwiastków z rozszczepienia którego można uzyskać energię jądrową. Jest to pierwiastek chemiczny należący do grupy III B (szereg aktynowców) w układzie okresowym, jego liczba atomowa jest najwyższa wśród pierwiastków występujących w przyrodzie (92), masa atomowa wynosi 238, uranu są trujące. W temperaturze pokojowej roztwarza się w kwasie solnym. Na gorąco reaguje z tlenem (U3O8), wodorem (UH3), fluorem (UF6, bezbarwne kryształy, łatwo sublimuje, stosowany do rozdziału izotopów uranu), parą wodną, kwasem azotowym, fluorowodorem, stopionymi alkaliami, siarką. W wysokich temperaturach wchodzi w reakcję z azotem, węglem, krzemem, borem, chlorem, kwasem uranu : 235U, 233U mogą być użyte jako paliwo jądrowe. Oprócz tego związki uranu stosowane są w przemyśle ceramicznym i szklarskim, fotografice, technologii jądrowa obejmuje nie tylko wytwarzanie energii, ale również zajmuje się problemami związanymi z wydobyciem uranu, przeróbką paliwa jądrowego oraz składowaniem odpadów jądrowych. Pierwsze elektrownie jądrowe pojawiły się w latach pięćdziesiątych, dynamiczny rozwój tej dziedziny rozpoczął się w drugiej połowie lat sześćdziesiątych, w związku z wzrostem kosztów energii uzyskiwanej ze spalania kopalin. Rozwój ten został prawie wstrzymany po katastrofie w kontrowersje wokół energetyki jądrowej związane są z problemem powstawania, transportu i składowania odpadów jądrowy, (reaktor atomowy, stos atomowy), to urządzenie służące do wytwarzania kontrolowanej reakcji łańcuchowej, tj. ciągłego pozyskiwania energii z rozszczepiania jąder kontrolowanej reakcji jądrowej podtrzymującej się samoczynnie na ustalonym poziomie nazywany jest stanem krytycznym. Jeśli intensywność reakcji narasta, to stan jest nadkrytyczny, gdy wygasa, to stan jest krytyczny uzyskuje się, gdy efektywny współczynnik mnożenia neutronów κ = 1, tzn. gdy strumień neutronów pochodzących z rozszczepienia jąder atomowych kompensuje straty neutronów wynikające z ich rozproszenia i pochłonięcia. Odchylenie stanu reaktora jądrowego od stanu krytycznego opisuje tzw. reaktywność ρ = (κ-1)/ jest sterowalny i bezpieczny, gdy ma małą, dodatnią reaktywność związaną z neutronami opóźnionymi. Typowy reaktor jądrowy zbudowany jest z rdzenia, reflektora neutronów oraz osłon biologicznych. Sam rdzeń zawiera pręty paliwowe, pręty regulacyjne, pręty bezpieczeństwa, moderator, kanały chłodzenia i kanały elementem reaktora jądrowego są pręty paliwowe, które zawierają paliwo jądrowe w formie fizykochemicznej i o stopniu wzbogacenia dostosowanym do konstrukcji reaktora jądrowego. Moderator wykonany jest z materiałów zawierających duże ilości atomów o małej liczbie porządkowej Z, skutecznie zmniejszających energię neutronów produkowanych w trakcie regulujące i pręty bezpieczeństwa zbudowane są z substancji pochłaniających neutrony (np. bor, kadm), przy czym pręty regulacyjne służą do precyzyjnej zmiany strumienia neutronów, podczas gdy pręty bezpieczeństwa mają za zadanie całkowite przerwanie reakcji łańcuchowej w sytuacji awaryjnej - oba te rodzaje prętów wsuwa się i wysuwa z rdzenia w miarę kanały chłodzące przepompowuje się chłodziwo tzw. pierwszego obiegu (typowym chłodziwem jest woda, stosuje się również powietrze, azot, ciekły sód itd.). Kanały badawcze służą do kontrolowania poziomu strumienia neutronów, wykonywania naświetlań względu na zastosowanie rozróżnia się:1) reaktory jądrowe badawcze (o małej, tzw. zerowej mocy, wykorzystywane w badaniach naukowych jako silne źródła neutronów),2) reaktory jądrowe produkcyjne (służące do wytwarzania sztucznych pierwiastków promieniotwórczych na drodze aktywacji, głównie do produkcji plutonu - szczególną klasę tych reaktorów stanowią tzw. reaktory jądrowe powielające, w których paliwo jądrowe w trakcie wypalania przekształca się w inny rodzaj paliwa jądrowego),3) reaktory jądrowe energetyczne (wytwarzające energię cieplną przekształcaną w energię mechaniczną w napędach nuklearnych okrętów lub w energię elektryczną w energetyce jądrowej),4) reaktory jądrowe doświadczalne (prototypy nowych rozwiązań technicznych stosowanych w reaktorach jądrowych).Częstym kryterium klasyfikacji reaktorów jądrowych jest rodzaj zastosowanego moderatora i chłodziwa - istnieją zatem reaktory jądrowe wodno-wodne, ciężkowodno-wodne (ciężka woda), grafitowo-wodne, grafitowo-powietrzne, grafitowo-sodowe rodzajem klasyfikacji reaktorów jądrowych jest podział ze względu na wykorzystywaną energię neutronów lub wielkość ich strumienia (cechy te określają rodzaj paliwa i wiele innych parametrów reaktora). Zgodnie z tym kryterium rozróżnia się:1) reaktory jądrowe wysokostrumieniowe (o strumieniu neutronów przekraczającym 1014 cząstek/cm2s),2) reaktory jądrowe prędkie (gdy reakcja rozszczepienia zachodzi dzięki neutronom prędkim),3) reaktory jądrowe pośrednie (gdy stosuje się neutrony pośrednie),4) reaktory jądrowe termiczne (wykorzystywane są neutrony termiczne),5) reaktory jądrowe epitermiczne (reakcja zachodzi dzięki neutronom epitermicznym).Pierwszy reaktor jądrowy zbudowano w ramach Manhattan Project (CP-1, E. Fermi), obecnie na świecie eksploatowanych jest ich kilka tysięcy, w większości są one reaktorami badawczymi. W Polsce istnieje jeden badawczy reaktor jądrowy w Świerku (Maria). W poprzednich latach istniały jeszcze dwa reaktory (Ewa i Agata), obecnie są one Elementy konstrukcyjne reaktora jądrowego: 1 - osłona biologiczna, 2 - osłona ciśnieniowa, 3 - reflektor neutronów, 4 - pręty bezpieczeństwa, 5 - pręty sterujące, 6 - moderator, 7 - pręty paliwowe, 8 - chłodziwo. Odpady promieniotwórcze są to niewykorzystywane substancje promieniotwórcze. Powstają przy wydobywaniu i oczyszczaniu rud uranowych, wytwarzaniu ładunków jądrowych i paliwa jądrowego oraz jego późniejszej przeróbce, przy wytwarzaniu i oczyszczaniu preparatów zawierających izotopy promieniotwórcze (do różnych zastosowań) itp. To właśnie one i problemy związane z ich składowaniem stanowią przeszkodę w wytwarzaniu energii promieniotwórcze dzieli się na klasy ze względu na stan skupienia i formę chemiczną, aktywność (aktywność źródła promieniotwórczego) i radiotoksyczność zawartych w nich izotopów promieniotwórczych. Podstawowym rozróżnieniem odpadów promieniotwórczych jest podział na nisko- lub wysokoaktywne zazwyczaj przechowuje się w miejscu wytworzenia przez okres rzędu lat (potrzebny do rozpadu większości względnie krótkożyciowych izotopów promieniotwórczych zawartych w odpadach promieniotwórczych) w szczelnych opakowaniach zanurzonych w basenach wodnych (woda odbiera ciepło pochodzące z rozpadów promieniotwórczych), po czym poddawane są przetworzeniu, w wyniku którego zazwyczaj dąży się do zmniejszenia objętości odpadów promieniotwórczych zawierającego bardzo długożyciowe z metod postępowania z niskoaktywnymi odpadami promieniotwórczymi jest zaś zwiększanie ich objętości poprzez rozcieńczenie nieaktywnymi substancjami, przez co powstaje mieszanina o aktywności właściwej porównywalnej z aktywnością elementów naturalnego środowiska, którą można wprowadzić do jednak odpady promieniotwórcze, niskoaktywne, umieszczone w szczelnych pojemnikach, składuje się na zamkniętych składowiskach odpadów (w Polsce składowisko takie znajduje sie w Różanie). Ostatecznym miejscem przechowywania najbardziej długożyciowych odpadów promieniotwórczych są tzw. składowiska docelowe, lokalizowane na terenach asejsmicznych, na dużych głębokościach w skałach, przez które nie penetruje czas nienaruszonego przechowywania odpadów promieniotwórczych w takich składowiskach sięga milionów lat, składowiska takie są bardzo drogie. Problemy związane z gospodarką odpadami promieniotwórczymi są głównym ograniczeniem rozwoju energetyki jądrowe, materiał rozszczepialny wykorzystywany do uzyskiwania energii w reaktorach jądrowych. Zawiera najczęściej wzbogacony uran (tj. uran charakteryzujący się większą od naturalnej względną zawartością izotopu 235U, mieszczącą się w granicach od kilku do 90%), w różnych formach fizyko-chemicznych: jako ciało stałe (tlenek, węglik, stop metaliczny, metal; w postaci prętów, pastylek itp.), w postaci ciekłej (jako roztwór siarczanu lub azotanu uranylu) lub jako gaz (sześciofluorek uranu). Drugim materiałem wykorzystywanym jako paliwo jądrowe jest izotop plutonu rodzaj paliwa dopasowany jest do danego typu reaktora. W czasie umieszczenia paliwa jądrowego w reaktorze wzrasta w nim ilość produktów rozszczepienia i aktywacji, aż do poziomu wymuszającego wymianę danej porcji paliwa jądrowe wydobyte z reaktora nazywa się wypalonym (jest to najbardziej radioaktywna postać paliwa jądrowego), po pewnym czasie poddaje się je procesowi oczyszczenia w celu ponownego wykorzystania (odpady promieniotwórcze).Wraz z rozwojem techniki reaktorów jądrowych nastąpił rozwój radiochemii ( tuż po II wojnie światowej ), czyli nauki z pogranicza chemii i fizyki jądrowej. Zajmuje się ona badaniem fizykochemicznych i chemicznych własności izotopów promieniotwórczych, metodami analiz, wydzielania i oczyszczania śladowych ilości substancji promieniotwórczych, metodami znaczników izotopowych, wytwarzaniem i oczyszczaniem pierwiastków transuranowych ramach podsumowania mojej pracy chciałabym wyciągnąć wnioski co do zalet i wad związanych z wytwarzaniem energii jądrowej:WADY:- Brak miejsca na składowanie odpadów promieniotwórczych, szkodliwych dla zdrowia ludzi i zwierząt oraz dla środowiska naturalnego znajdującego się wokół nas;- Wytwarzanie uranu związane jest również z procesami uszkadzającymi naturalną „powłokę” środowiska;- Są ludzie którzy wykorzystują energię jądrową w sposób niekontrolowany, np. przy pomocy broni jądrowej. Broń jądrowa to jeden z rodzajów broni masowej zagłady o działaniu wybuchowym o wielkiej sile;- Związane z elektrowniami jądrowymi wybuchy, np. wybuch elektrowni w Czarnobylu, który spowodował wielkie straty oraz był przyczyną mutacji genetycznych rodzących się w tym okresie dzieci; ZALETY:- W porównaniu do innych nienaturalnych sposobów wytwarzania energii powoduje stosunkowo niewielkie szkody w środowisku naturalnym;- Tańszy niż inne, sposób wytwarzania energii;- Umiejętnie wykorzystywana energia powoduje wiele dobrego;Przede wszystkim chciałabym dodać, że wszystkie zawarte w mojej pracy informacje mogą zaświadczyć o dobrych, jak i o złych stronach energetyki jądrowej. Wytwarzanie energii jądrowej nie jest bardzo kosztowne, ale dosyć szkodliwe oraz niesie za sobą pewne ryzyko. Niedobrze wykorzystana energia może spowodować więcej szkód niż z:- Encyklopedii PWN,- Internetowej encyklopedii Fogra,
Mówienie o energii jądrowej to myślenie o katastrofach w Czarnobylu i Fukushimie, które miały miejsce odpowiednio w 1986 i 2011 roku. Jest to rodzaj energii, który ze względu na niebezpieczeństwo wywołuje pewien strach. Wszystkie rodzaje energii (poza odnawialnymi) generują reperkusje dla środowiska i ludzi, chociaż niektóre robią to w większym stopniu niż inne. W tym przypadku energia jądrowa nie emituje gazów cieplarnianych podczas swojej produkcji, ale nie oznacza to, że nie wpływa negatywnie zarówno na środowisko, jak i człowieka. Jest ich wiele zalety i wady energetyki jądrowej a człowiek musi ocenić każdą z nich. Dlatego w tym artykule skupimy się na wyjaśnieniu, jakie są zalety i wady energii jądrowej oraz jak wpływa ona na ludność. Wskaźnik1 Czym jest energia jądrowa2 Zalety i wady energetyki Wady3 Jak energia jądrowa wpływa na środowisko? Czym jest energia jądrowa Przede wszystkim trzeba wiedzieć, czym jest ten rodzaj energii. Energia jądrowa to energia, którą uzyskujemy z rozszczepienia (podziału) lub fuzji (połączenia) atomów tworzących materiał. W rzeczywistości, Wykorzystywana przez nas energia jądrowa jest uzyskiwana z rozszczepienia atomów uranu. Ale nie byle jaki uran. Najczęściej używany jest U-235. Wręcz przeciwnie, słońce wschodzące każdego dnia jest ogromnym reaktorem syntezy jądrowej, który może generować dużo energii. Bez względu na to, jak czysta i bezpieczna jest, idealną energią jądrową jest zimna fuzja. Innymi słowy, proces fuzji, ale temperatura jest bliższa temperaturze pokojowej niż ekstremalnej temperaturze słońca. Chociaż synteza jądrowa jest badana, rzeczywistość jest taka, że ten rodzaj energii jądrowej jest uważany tylko za teoretyczny i nie wydaje się, że jesteśmy blisko jego osiągnięcia. Dlatego energia jądrowa, o której zawsze słyszeliśmy i o której tutaj wspominaliśmy, jest rozszczepieniem atomów uranu. Zalety i wady energetyki jądrowej Zaleta Choć ma to negatywne konotacje, nie oceniaj po wiadomościach, a nawet filmach o wypadkach i odpadach promieniotwórczych. W rzeczywistości energia jądrowa ma wiele zalet. Najważniejsze z nich to: Energia jądrowa jest czysta w procesie produkcji. W rzeczywistości większość reaktorów jądrowych emituje do atmosfery jedynie nieszkodliwą parę wodną. To nie dwutlenek węgla, metan ani żaden inny zanieczyszczający gaz lub gaz nie powoduje zmian klimatu. Koszt wytwarzania energii jest niski. Ze względu na potężną moc energetyki jądrowej w jednej fabryce można wytworzyć dużą ilość energii. Jest prawie niewyczerpany. W rzeczywistości niektórzy eksperci uważają, że powinniśmy ją zaliczyć do energii odnawialnej, ponieważ obecne rezerwy uranu mogą nadal wytwarzać tę samą energię, co obecnie przez tysiące lat. Jego pokolenie jest stałe. W przeciwieństwie do wielu odnawialnych źródeł energii (takich jak energia słoneczna, której nie można wytworzyć w nocy lub wiatr, którego nie można wytworzyć bez wiatru), jej produkcja jest ogromna i utrzymuje się na stałym poziomie przez setki dni. Przez 90% roku, z wyłączeniem planowanych uzupełnień i przestojów remontowych, energetyka jądrowa pracuje z pełną mocą. Wady Jak można się spodziewać, energia jądrowa ma również pewne wady. Najważniejsze z nich to: Jej odpady są bardzo niebezpieczne. Generalnie mają negatywny wpływ na zdrowie i środowisko. Odpady radioaktywne są poważnie skażone i śmiertelne. Jego degradacja trwa tysiące lat, co sprawia, że zarządzanie nim jest bardzo delikatne. W rzeczywistości jest to problem, którego jeszcze nie rozwiązaliśmy. Wypadek może być bardzo poważny. Elektrownie jądrowe są wyposażone w dobre zabezpieczenia, ale wypadki mogą się zdarzyć, w tym przypadku awaria może być bardzo poważna. Wyspa Trzech Mil w Stanach Zjednoczonych, Fukushima w Japonii czy Czarnobyl w byłym Związku Radzieckim to przykłady tego, co może się wydarzyć. To wrażliwe cele. Niezależnie od tego, czy jest to klęska żywiołowa, czy akt terroryzmu, elektrownia jądrowa jest celem, a jeśli zostanie zniszczona lub uszkodzona, przyniesie ogromne straty. Jak energia jądrowa wpływa na środowisko? Emisiones de CO2 Choć a priori może się wydawać, że jest to energia, która nie emituje gazów cieplarnianych, to nie jest do końca prawdą. W porównaniu z innymi paliwami emisje prawie nie istnieją, ale nadal są obecne. W elektrowni cieplnej głównym gazem emitowanym do atmosfery jest CO2. Z drugiej strony w elektrowni jądrowej emisje są znacznie niższe. CO2 jest emitowany tylko podczas wydobycia uranu i jego transportu do zakładu. Wykorzystanie wody Do schłodzenia substancji wykorzystywanych podczas procesu rozszczepienia jądrowego potrzebne są duże ilości wody. Ma to na celu zapobieganie osiąganiu niebezpiecznych temperatur w reaktorze. Użyta woda pochodzi z rzek lub morza. Przy wielu okazjach można znaleźć w wodzie zwierzęta morskie, które giną, gdy woda jest podgrzewana. Podobnie woda wraca do środowiska o wyższej temperaturze, powodując śmierć roślin i zwierząt. Możliwe wypadki Wypadki w elektrowniach jądrowych są bardzo rzadkie, ale bardzo niebezpieczne. Każdy wypadek może wyprodukować katastrofa o ogromnej skali, zarówno na poziomie ekologicznym, jak i ludzkim. Problem z tymi wypadkami polega na promieniowaniu, które przedostaje się do środowiska. Promieniowanie to jest śmiertelne dla każdej narażonej rośliny, zwierzęcia lub osoby. Ponadto jest zdolny do pozostawania w środowisku przez dziesięciolecia (Czarnobyl nie nadaje się jeszcze do zamieszkania ze względu na poziom promieniowania). Odpady nuklearne Poza możliwymi awariami jądrowymi wytwarzane odpady mogą pozostawać przez tysiące lat, dopóki nie przestaną być radioaktywne. Stanowi to zagrożenie dla flory i fauny planety. Dziś na cmentarzach jądrowych ma zostać zamknięte przetwarzanie tych odpadów. Cmentarze te zapewniają szczelność i izolację odpadów oraz są umieszczane pod ziemią lub na dnie morza, aby nie uległy zanieczyszczeniu. Problem z tą gospodarką odpadami polega na tym, że jest to rozwiązanie krótkoterminowe. To jest, okres, przez który odpady promieniotwórcze pozostają radioaktywne, jest dłuższy niż czas życia skrzynek w którym są zapieczętowane. Przywiązanie do człowieka Promieniowanie, w przeciwieństwie do innych zanieczyszczeń, nie możesz ani powąchać, ani widzieć. Jest szkodliwy dla zdrowia i może być utrzymywany przez dziesięciolecia. Podsumowując, energia jądrowa może wpływać na ludzi w następujący sposób: Powoduje wady genetyczne. Powoduje raka, zwłaszcza tarczycy, ponieważ ten gruczoł wchłania jod, chociaż powoduje również guzy mózgu i raka kości. Problemy ze szpikiem kostnym, które z kolei powodują białaczkę lub anemię. Wady rozwojowe płodu. Bezpłodność Osłabia układ odpornościowy, co zwiększa ryzyko infekcji. Zaburzenia żołądkowo-jelitowe. Problemy psychiczne, zwłaszcza lęk przed promieniowaniem. W wysokich lub długotrwałych stężeniach powoduje śmierć. Biorąc pod uwagę wszystko, co udało się zaobserwować, ideałem jest znalezienie równowagi między różnymi zastosowaniami energii przy jednoczesnym zwiększeniu energii odnawialnej i postępie w transformacji energetycznej. Mam nadzieję, że dzięki tym informacjom można dowiedzieć się więcej o zaletach i wadach energetyki jądrowej. Treść artykułu jest zgodna z naszymi zasadami etyka redakcyjna. Aby zgłosić błąd, kliknij być zainteresowany
Głośnym echem odbiła się informacja, że miliarderzy Sołowow i Solorz chcą zbudować elektrownię jądrową w Polsce w technologii SMR. , a realnie zyski z takiego przedsięwzięcia pojawić się mogą dopiero za kilkanaście lat. Small Modular Reactors czyli małe reaktory modułowe to idea bloków jądrowych złożonych z reaktorów o mocy nieprzekraczającej 300MW. Dla porównania “klasyczne” elektrownie jądrowe: elektrownia jądrowa na Białorusi (najbliżej Polski) -moc 2,2 GW Bałtycka Elektrownia Jądrowa (obwód kaliningradzki) – moc 1,1GW Elektrownia atomowa Kashiwazaki-Kariwa w Japonii (największa) – moc 7,7 GW Zaporoska Elektrownia Jądrowa (Ukraina) – moc 5,7 GW Patrząc na mapę elektrowni jądrowych można niestety powiedzieć, że Polska została “biała plamą” w Europie: źródło : Kilka informacji o SMR: SMR w założeniu mają być odpowiedzią na szereg kłopotów prześladujących tradycyjną energetykę atomową, w tym przede wszystkim kapitałochłonność pojedynczej inwestycji, wysoki stopień złożoności projektu oraz długie czasy budowy – źródło : Najbardziej fundamentalny problem jest taki, że małych reaktorów jądrowych zwyczajnie jeszcze nie tej kategorii mamy póki co do czynienia jedynie z niezrealizowanymi projektamiOznacza to duże prawdopodobieństwo, że gdyby wybrać taką konstrukcję do realizacji w Polsce, byłby to prototyp, co zawsze wiąże się z ryzykiem opóźnień, przekroczeń kosztów oraz niespełnienia założeń. Historia rozwoju techniki z ostatnich dekad nie napawa optymizmem w kwestii szybkości wdrożeń nowych, zaawansowanych rozwiązań techn
elektrownie jądrowe wady i zalety